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Outline

• Systems with two different weakly coupled current-carrying 
parallel channels:
- Multilayer structures
- 2 – gap superconductors (π and σ bands in MgB2)

• How does current destroy superconductivity?
- Current-induced decoupling of channels and formation of equilibrium 

phase textures
- Current sharing and suppression of current pairbreaking in the 

weaker channel
- Global pairbreaking

• Manifestations
- Current - controlled 4 terminal devices
- Current - induced interband phase textures in MgB2



Two-gap superconductivity in MgB2

Liu, Mazin and Kortus (2002);
Choi et al, (2002)

• 2D big gap for in-plane σ-orbitals s and 
3D small gap for out-of-plane π-orbitals

• Weak interband coupling due to 
orthogonal pz and pxy orbitals of B

Small gap, 
∆π = 2.3meV

Big gap,
∆σ ≈ 7 meV

High Tc = 40K, but
low Hc2 of MgB2 single crystals:

Hc2
⊥(0) ≈ 3.5 T

Hc2
||(0) ≈ 13 T



Tunable impurity scattering

• Mg - substitution: 3D intraband π
scattering

• B - substitution: 2D  intraband σ
scattering

• Weak interband scattering

• Selective atomic substitution produces 
quenched impurity or vacancy structures 

Anisotropic intraband diffusivities: 
Dσ

(c) << Dσ
(ab) ,    Dπ

(c) ≈ Dπ
(ab)

Dσ/Dπ is a variable material parameter 

σ

π



Toy model for MgB2

π

σ
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• Two weakly coupled thin films
(σ and π)  

• Tc
(σ) > Tc

(π)

• Weak Josephson coupling 
analogous to interband coupling 

Hc2

T

π

σ
Cleaner π

Hc2

T

Cleaner σ

π

σ

H

Upward curvature of Hc2(T)

More details on Hc2 in multilayers in: 
S. Takahashi and M. Tachiki, PRB 33, 4620 (1986)
For MgB2 see: AG, PRB 67, 184515 (2003)
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Phase locked current state

Q = ∇χ + 2πA/φ0

Same phases χ1 = χ2 to minimize the Josephson energy,

WJ = (ħJc/2e)[1 – cos(χ1 - χ2)]

Current-carrying state: Ψ1 = ∆1exp(iχ1),      Ψ2 = ∆2exp(iχ2),
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What happens at higher currents?



GL depairing current density

• GL current-carrying state with ψ = ψ0exp (-iqx), in a thin  filament.  
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Transition to a phase slip state

I1

2 ξ2 

ξ1

• What happens if Qξ2 ∼ 1 in film 2, but Qξ1 << 1 in film 1? 
• Film 2 cannot go normal
• Current redistribution enforces different Q1 and Q2 competing with 

the Josephson energy  

I1

2

• Current-induced vortex structure (interlayer phase texture) provides
current sharing between films 1 and 2

• For weak Josephson coupling, the lock-in transition occurs at  I << Id
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Four terminal devices

I

I⊥

• Period of vortex structure is 
controlled by parallel current I

• Dynamics of vortices is 
controlled by perpendicular 
current I⊥

• Parametric amplifier 

• No magnetic field is needed



GL theory
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• Thermodynamic potential for slow variation of θ(r) = χ1 - χ2 and fixed I
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• Energy scales: ε1 =  α1
2ξ1

2d1/2β1, ε2 =  α2
2ξ2

2d2/2β2,   εJ = γ∆1∆2

Expand G to quadratic terms in small ∇θ



Energy of phase textures
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Similar to the energy of a long Josephson contact. The effective magnetic field h is due 
to asymmetric pairbreaking. Both Lθ and h depend on current

β = I⊥/Ic

02
22

21
22

1

2
22

21
22

1

22
2

22
1212

2
22

21
22

1

22
1

2
221

/8])1()1[(

,
])31()31[(
)31)(31(4

,
])31()31[(

)(8

φπεξεξ

εεξεξ
ξξεε

εεξεξ
ξξεε

θ

cQQQI

QQ
QQL

QQ
Qh

J

J

−+−−=

−+−
−−

=

−+−
−

= • Nonlinear pairbreaking for ξ1 ≠ ξ2. 

• Large h and Lθ >> ξ2 due to weak 
Josephson coupling

• Lθ2 (Q) changes sign at

22 3/1 ξ=cQ



Explosive current redistribution at Qc2 well below the usual depairing current

Spinodal current instability at Qc2

• Expansion to higher order derivatives: 
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• where ℓ ∼ ξ2, and L0
2 = 4ε2/εJ >> ξ2. 

• Periodic weak disturbance θ0cos(kx), with k2 = (3Q2ξ2
2 -1)/ℓ2

• Linear instability at Qc2 at finite wave vector km
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• No small amplitude solutions above Qc2 (analog of Hc2 for vortices)



Equilibrium phase textures
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&&& Textures are energetically favorable 

for Q > Qc1 analogous to Hc1 for JJ  

• A single 2π kink, θ(x) = 4tan-1exp(x/Lθ) appears if 2πQh(Q) > 8Lθ:
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• Parametric relation which defines the period a(I) (0 < p < 1):
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• Periodic phase texture θ(x) = am(x/pLθ,p).   

Different from nonequilibrium textures caused by electric field, AG & V. Vinokur, PRL 90, 047004 (2003)
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Phase-unlocked resistive transition

• Switching to ohmic flux flow  for I > Ic1

• Resistive transition controlled by
longitudinal current



Oscillating Josephson voltage

• Josephson ac voltage voltage: V = (φ0v/2πc)am/(vt/pLθ, p)

• Washboard frequency proportional to the transverse current I⊥



Two-gap superconductors
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Here Dαβ are intraband electron diffusivities, Π = ∇ + 2πiA/φ0 ,    |fm|2 + gm
2 = 1,    γ are 

interband scattering rates,  λnm are the BCS coupling constants
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AG, PRB 67, 184515 (2003)Dirty limit, two-gap Usadel equations:



Phase textures for all T
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Small Q expansion for all T: h = f(T)Q3. Example for T = 0
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ξ = (D/∆)1/2 are dirty coherence lengths at T = 0, and  J2 = cφ0/8π2Λ2ξ2 is the depairing
current density for the weaker band. 



Interband phase textures in MgB2

• For the parameters of MgB2, Jc1 is not much smaller than Jc2. 
• Static interband phase textures θ(x) along the current direction at Q ≈ 1/ξπ√3

Screening current:   cH/4πΛ ≈ cφ0/8π2Λ2 ξπ√3

Band decoupling magnetic field
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• Textures facilitate vortex penetration over the surface barrier

• Breakdown of linear London electrodynamics, mechanism of nonlocality and 
nonlinearity

• Nonlinearity of the rf surface impedance at H ≈ Hθ



Conclusions

• Two - stage superconductivity breakdown by current: 
- I < Ic1 - phase-locked state
- Ic1 < I < Id - band (layer) decoupling, current redistribution resulting in 

static phase textures
- I > Id - global pairbreaking

• Current - controlled 4-terminal devices
- Current switching and ac flux flow oscillators
- Parametric generators and amplifiers

• Interband phase textures in MgB2
- Dc current pairbreaking
- Vortex penetration
- Effect on vortex lattice and the vortex core structure
- Pinning and critical currents
- Nonlinearity of the rf surface impedance


